资源类型

期刊论文 1139

会议视频 66

会议信息 3

会议专题 1

年份

2024 2

2023 97

2022 145

2021 122

2020 89

2019 78

2018 77

2017 49

2016 45

2015 73

2014 47

2013 44

2012 40

2011 52

2010 47

2009 40

2008 33

2007 22

2006 12

2005 13

展开 ︾

关键词

能源 51

可持续发展 12

核能 11

可再生能源 10

节能 10

碳中和 8

能源安全 6

2035 4

新能源 4

氢能 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

中长期 3

关键技术 3

太阳能 3

展开 ︾

检索范围:

排序: 展示方式:

Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections

Jin ZENG, Chenguang ZHAO, Hui MA, Bangchun WEN

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 374-389 doi: 10.1007/s11465-019-0580-8

摘要: In the existing literature, most studies investigated the free vibrations of a rotating pre-twisted cantilever beam; however, few considered the effect of the elastic-support boundary and the quantification of modal coupling degree among different vibration directions. In addition, Coriolis, spin softening, and centrifugal stiffening effects are not fully included in the derived equations of motion of a rotating beam in most literature, especially the centrifugal stiffening effect in torsional direction. Considering these deficiencies, this study established a coupled flapwise–chordwise–axial–torsional dynamic model of a rotating double-tapered, pre-twisted, and inclined Timoshenko beam with elastic supports based on the semi-analytic method. Then, the proposed model was verified with experiments and ANSYS models using Beam188 and Shell181 elements. Finally, the effects of setting and pre-twisted angles on the degree of coupling among flapwise, chordwise, and torsional directions were quantified via modal strain energy ratios. Results showed that 1) the appearance of torsional vibration originates from the combined effect of flapwise–torsional and chordwise–torsional couplings dependent on the Coriolis effect, and that 2) the flapwise–chordwise coupling caused by the pure pre-twisted angle is stronger than that caused by the pure setting angle.

关键词: elastic-support boundary     pre-twisted beam     semi-analytic method     modal strain energy ratio     torsional vibration    

Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration

Zhigen WU, Guohua LIU, Zihua ZHANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 112-120 doi: 10.1007/s11709-010-0069-3

摘要: A novel damage assessment method based on the decay ratio of acceleration signals (DRAS) was proposed. Two experimental tests were used to show the efficiency. Three beams were gradually damaged, and then the changes of dynamic parameters were monitored from initial to failure state. In addition, a new method was compared with the linear modal-based damage assessment using wavelet transform (WT). The results clearly show that DRAS increases in linear elasticity state and microcrack propagation state, while DRAS decreases in macrocrack propagation state. Preliminary analysis was developed considering the beat phenomenon in the nonlinear state to explain the turn point of DRAS. With better sensibility of damage than modal parameters, probably DRAS is a promising damage indicator in damage assessment.

关键词: damage assessment     decay ratio of acceleration signals (DRAS)     wavelet transform (WT)     modal analysis     reinforced concrete beam     beat phenomenon    

network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modalkinetic energy

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1453-1479 doi: 10.1007/s11709-021-0767-z

摘要: This paper proposes a new Deep Feed-forward Neural Network (DFNN) approach for damage detection in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. In the proposed approach, the DFNN model is developed based on a data set containing 20 000 samples of damage scenarios, obtained via finite element (FE) simulation, of the FG-CNTRC plates. The elemental modal kinetic energy (MKE) values, calculated from natural frequencies and translational nodal displacements of the structures, are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output. The state-of-the art Exponential Linear Units (ELU) activation function and the Adamax algorithm are employed to train the DFNN model. Additionally, in order to enhance the performance of the DFNN model, the mini-batch and early-stopping techniques are applied to the training process. A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer. The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution (UD) and functionally graded-V distribution (FG-VD). Furthermore, the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated. Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data.

关键词: damage detection     deep feed-forward neural networks     functionally graded carbon nanotube-reinforced composite plates     modal kinetic energy    

An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model

Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 907-929 doi: 10.1007/s11709-020-0628-1

摘要: In this study, the performance of an efficient two-stage methodology which is applied in a damage detection system using a surrogate model of the structure has been investigated. In the first stage, in order to locate the damage accurately, the performance of the modal strain energy based index for using different numbers of natural mode shapes has been evaluated using the confusion matrix. In the second stage, to estimate the damage extent, the sensitivity of most used modal properties due to damage, such as natural frequency and flexibility matrix is compared with the mean normalized modal strain energy (MNMSE) of suspected damaged elements. Moreover, a modal property change vector is evaluated using the group method of data handling (GMDH) network as a surrogate model during damage extent estimation by optimization algorithm; in this part of methodology, the performance of the three popular optimization algorithms including particle swarm optimization (PSO), bat algorithm (BA), and colliding bodies optimization (CBO) is examined and in this regard, root mean square deviation ( ) based on the modal property change vector has been proposed as an objective function. Furthermore, the effect of noise in the measurement of structural responses by the sensors has also been studied. Finally, in order to achieve the most generalized neural network as a surrogate model, GMDH performance is compared with a properly trained cascade feed-forward neural network (CFNN) with log-sigmoid hidden layer transfer function. The results indicate that the accuracy of damage extent estimation is acceptable in the case of integration of PSO and MNMSE. Moreover, the GMDH model is also more efficient and mimics the behavior of the structure slightly better than CFNN model.

关键词: two-stage method     modal strain energy     surrogate model     GMDH     optimization damage detection    

Multiple damage detection in complex bridges based on strain energy extracted from single point measurement

Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 722-730 doi: 10.1007/s11709-020-0624-5

摘要: Strain Energy of the structure can be changed with the damage at the damage location. The accurate detection of the damage location using this index in a force system is dependent on the degree of accuracy in determining the structure deformation function before and after damage. The use of modal-based methods to identify damage in complex bridges is always associated with problems due to the need to consider the effects of higher modes and the adverse effect of operational conditions on the extraction of structural modal parameters. In this paper, the deformation of the structure was determined by the concept of influence line using the Betti-Maxwell theory. Then two damage detection indicators were developed based on strain energy variations. These indices were presented separately for bending and torsion changes. Finite element analysis of a five-span concrete curved bridge was done to validate the stated methods. Damage was simulated by decreasing stiffness at different sections of the deck. The response regarding displacement of a point on the deck was measured along each span by passing a moving load on the bridge at very low speeds. Indicators of the strain energy extracted from displacement influence line and the strain energy extracted from the rotational displacement influence line (SERIL) were calculated for the studied bridge. The results show that the proposed methods have well identified the location of the damage by significantly reducing the number of sensors required to record the response. Also, the location of symmetric damages is detected with high resolution using SERIL.

关键词: damage detection     strain energy     influence line     complex bridges     rotation displacement    

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 760-772 doi: 10.1007/s11709-020-0618-3

摘要: As a typical compression member, the concrete-filled steel tube has been widely used in civil engineering structures. However, little research on recycled self-compacting concrete filled circular steel tubular (RSCCFCST) columns subjected to eccentric load was reported. In this study, 21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors. Recycled coarse aggregate replacement ratio, concrete strength grade, length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests. The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on eccentric load-bearing capacity of RSCCFCST columns. The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade. With increase of eccentric distance, the ductility of specimens increases while the bearing capacity decreases. Moreover, a phenomenological model of RSCCFCST columns is proposed, which exhibits versatile ability to capture the process during loading. The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.

关键词: concrete filled circular steel tubular columns     recycled self-compacting concrete     eccentric compression     recycled coarse aggregate replacement ratio     stress-strain relationship    

Influence of loading ratio on flat slab connections at elevated temperature: A numerical study

Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 664-674 doi: 10.1007/s11709-020-0620-9

摘要: For reinforced concrete members subjected to high temperature, the degree of in-service loading, commonly expressed as the loading ratio, can be highly influential on the structural behavior. In particular, the loading ratio may be pivotal in relation to the phenomenon of load-induced thermal strain. Despite its potentially pivotal role, to date, the influence of the loading ratio on both material and structural behavior has not been explored in detail. In practice, real structures experience variation in imposed loading during their service life and it is important to understand the likely response at elevated temperatures across the loading envelope. In this paper, the effect of the loading ratio is numerically investigated at both material and structural level using a validated finite element model. The model incorporates a proposed constitutive model accounting for load-induced thermal strain and this is shown to outperform the existing Eurocode 2 model in terms of accuracy. Using the validated model, the specific case of flats slabs and the associated connections to supporting columns at various loading ratios are explored. For the cases examined, a marked difference in the structural behavior including displacement direction was captured from low to high loading ratios consistent with experimental observations.

关键词: concrete     finite elements     fire     load-induced thermal strain     punching shear    

Damage detection in beam-like structures using static shear energy redistribution

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1552-1564 doi: 10.1007/s11709-022-0903-4

摘要: In this study, a static shear energy algorithm is presented for the damage assessment of beam-like structures. According to the energy release principle, the strain energy of a damaged element suddenly changes when structural damage occurs. Therefore, the change in the static shear energy is employed to determine the damage locations in beam-like structures. The static shear energy is derived from the spectral factorization of the elementary stiffness matrix and structural deflection variation. The advantage of using shear energy as opposed to total energy is that only a few deflection data points of the beam structure are required during the process of damage identification. Another advantage of the proposed approach is that damage detection can be performed without establishing a structural finite-element model in advance. The proposed technique is first validated using a numerical example with single, multiple, and adjacent damage scenarios. A channel steel beam and rectangular concrete beam are employed as experimental cases to further verify the proposed approach. The results of the simulation and experiment examples indicate that the proposed algorithm provides a simple and effective method for defect localization in beam-like structures.

关键词: damage detection     beam structure     strain energy     static displacement variation     energy damage index    

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

《机械工程前沿(英文)》 2016年 第11卷 第4期   页码 388-402 doi: 10.1007/s11465-016-0404-z

摘要:

Wind turbine gearbox (WTG), which functions as an accelerator, ensures the performance and service life of wind turbine systems. This paper examines the distinctive modal properties of WTGs through finite element (FE) and experimental modal analyses. The study is performed in two parts. First, a whole system model is developed to investigate the first 10 modal frequencies and mode shapes of WTG using flexible multi-body modeling techniques. Given the complex structure and operating conditions of WTG, this study applies spring elements to the model and quantifies how the bearings and gear pair interactions affect the dynamic characteristics of WTGs. Second, the FE modal results are validated through experimental modal analyses of a 1.5 WM WTG using the frequency response function method of single point excitation and multi-point response. The natural frequencies from the FE and experimental modal analyses show favorable agreement and reveal that the characteristic frequency of the studied gearbox avoids its eigen-frequency very well.

关键词: wind turbine gearbox     modal analysis     finite element analysis     modal frequency     bearing equivalence    

Heating energy performance and part load ratio characteristics of boiler staging in an office building

Da Young LEE, Byeong Mo SEO, Yeo Beom YOON, Sung Hyup HONG, Jong Min CHOI, Kwang Ho LEE

《能源前沿(英文)》 2019年 第13卷 第2期   页码 339-353 doi: 10.1007/s11708-018-0596-5

摘要: Commercial buildings account for significant portions of the total building energy in South Korea and thus a variety of research on the boiler operation related to heating energy in office buildings has been carried out thus far. However, most of the researches have been conducted on the boiler itself, i.e., the part load ratio characteristics and the corresponding gas energy consumption patterns are not analyzed in the existing studies. In this study, the part load ratio and the operating characteristics of gas boiler have been analyzed within an office building equipped with the conventional variable air volume system. In addition, the gas consumption among different boiler staging schemes has been comparatively analyzed. As a result, significant portions of total operating hours, heating load and energy consumption has been found to be in a part load ratio range of 0 through 40% and thus energy consumption is significantly affected by boiler efficiency at low part load conditions. This suggests that boiler operation at the part load is an important factor in commercial buildings. In addition, utilizing sequential boiler staging scheme can save a gas usage of about 7%. For annual heating energy saving, applying the sequential control boiler with a 3:7 proportion staging is considered to be the optimal control algorithm for maximum efficiency of boilers.

关键词: EnergyPlus     boiler     part load ratio     gas consumption     office building     boiler staging    

Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture

《医学前沿(英文)》 doi: 10.1007/s11684-023-1023-9

摘要: Malnutrition in early life increases the risk of osteoporosis, but the association of early-life undernutrition combined with adulthood obesity patterns with low-energy fracture remains unknown. This study included 5323 community-dwelling subjects aged ≥40 years from China. Early-life famine exposure was identified based on the participants’ birth dates. General obesity was assessed using the body mass index (BMI), and abdominal obesity was evaluated with the waist-to-hip ratio (WHR). Low-energy fracture was defined as fracture occurring after the age of 40 typically caused by falls from standing height or lower. Compared to the nonexposed group, the group with fetal, childhood, and adolescence famine exposure was associated with an increased risk of fracture in women with odds ratios (ORs) and 95% confidence intervals (CIs) of 3.55 (1.57–8.05), 3.90 (1.57–9.71), and 3.53 (1.05–11.88), respectively, but not in men. Significant interactions were observed between fetal famine exposure and general obesity with fracture among women (P for interaction = 0.0008). Furthermore, compared with the groups with normal BMI and WHR, the group of women who underwent fetal famine exposure and had both general and abdominal obesity had the highest risk of fracture (OR, 95% CI: 3.32, 1.17–9.40). These results indicate that early-life famine exposure interacts with adulthood general obesity and significantly increases the risk of low-energy fracture later in life in women.

关键词: famine     obesity     body mass index     waist-to-hip ratio     low-energy fracture    

农业生态工程中人工辅助能产投比的计算分析研究

卞有生,柳英昆,卞晶

《中国工程科学》 2006年 第8卷 第8期   页码 28-32

摘要:

人工辅助能产投比的高低从总体上反映了农业生态系统的功能和生产效率,是系统结构功能的体现,是评价农业生态工程的重要指标。文章以河南新县10户农民为案例,具体介绍了人工辅助能产投比的计算研究方法,并报告了连续3年的研究结果。

关键词: 农业生态工程     能量产投比    

Experimental and computational validation of a scaled train tunnel model using modal analysis

Janice B. D’SOUZA, Sangarapillai KANAPATHIPILLAI

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 420-428 doi: 10.1007/s11465-013-0281-7

摘要:

Acoustic engineers are faced with the challenge of minimising reverberation time in their designs so as to contribute to the health and well-being of those traveling by train and those on the platforms. Although the problem is easy to identify, it is not as simple to solve. The acoustical environment of a train tunnel is complex, with a variety of noise contributing factors such as train announcements, speech of commuters, ventilation systems, electrical equipment and wheel and rail noise. As a result, there is some difficulty in modeling the complete acoustic environment with computational or acoustic first principles. In this study, an experimental rig was constructed to model the acoustic behavior within a tunnel. The modal properties for the 300 Hz to 1500 Hz range, including resonances and mode shapes were identified and were shown to successfully correspond to theoretical results and a computational model created in COMSOL using Finite Element Analysis.

关键词: reverberation time     acoustic environment     modal properties     resonances    

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1082-1094 doi: 10.1007/s11709-019-0537-3

摘要: An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

关键词: modal parameter identification     variational mode decomposition     civil structure     nonlinear system     closely spaced modes    

ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment

D. SENDIL KUMAR,R. ELANSEZHIAN

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 75-80 doi: 10.1007/s11465-014-0285-y

摘要:

In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of the concept of the nanofluids, which was prepared by mixing ZnO nanoparticles with R152a refrigerant. The conventional refrigerant R134a has a global warming potential (GWP) of 1300 whereas R152a has a significant reduced value of GWP of 140 only. An experimental test rig is designed and fabricated indigenously in the laboratory to carry out the investigations. ZnO nanoparticles with refrigerant mixture were used in HFC R152a refrigeration system. The system performance with nanoparticles was then investigated. The concentration of nano ZnO ranges in the order of 0.1% v, 0.3% v and 0.5%v with particle size of 50 nm and 150 g of R152a was charged and tests were conducted. The compressor suction pressure, discharge pressure and evaporator temperature were measured. The results indicated that ZnO nanorefrigerant works normally and safely in the system. The ZnO nanoparticle concentration is an important factor considered for heat transfer enhancement in the refrigeration system. The performance of the system was significantly improved with 21% less energy consumption when 0.5%v ZnO-R152a refrigerant. Both the suction pressure and discharge pressure were lowered by 10.5% when nanorefrigerant was used. The evaporator temperature was reduced by 6% with the use of nanorefrigerant. Hence ZnO nanoparticles could be used in refrigeration system to considerably reduce energy consumption. The usage of R152a with zero ozone depleting potential (ODP) and very less GWP and thus provides a green and clean environment. The complete experimental results and their analysis are reported in the main paper.

关键词: ZnO nanorefrigerant     reduced GWP     COP     pressure ratio green energy    

标题 作者 时间 类型 操作

Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections

Jin ZENG, Chenguang ZHAO, Hui MA, Bangchun WEN

期刊论文

Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration

Zhigen WU, Guohua LIU, Zihua ZHANG

期刊论文

network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modalkinetic energy

期刊论文

An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model

Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN

期刊论文

Multiple damage detection in complex bridges based on strain energy extracted from single point measurement

Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI

期刊论文

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

期刊论文

Influence of loading ratio on flat slab connections at elevated temperature: A numerical study

Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM

期刊论文

Damage detection in beam-like structures using static shear energy redistribution

期刊论文

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

期刊论文

Heating energy performance and part load ratio characteristics of boiler staging in an office building

Da Young LEE, Byeong Mo SEO, Yeo Beom YOON, Sung Hyup HONG, Jong Min CHOI, Kwang Ho LEE

期刊论文

Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture

期刊论文

农业生态工程中人工辅助能产投比的计算分析研究

卞有生,柳英昆,卞晶

期刊论文

Experimental and computational validation of a scaled train tunnel model using modal analysis

Janice B. D’SOUZA, Sangarapillai KANAPATHIPILLAI

期刊论文

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

期刊论文

ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment

D. SENDIL KUMAR,R. ELANSEZHIAN

期刊论文